DUAL 4-INPUT MULTIPLEXER The LSTTL/MSI SN54/74LS153 is a very high speed Dual 4-Input Multiplexer with common select inputs and individual enable inputs for each section. It can select two bits of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the LS153 can generate any two functions of three variables. The LS153 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families. - Multifunction Capability - Non-Inverting Outputs - Separate Enable for Each Multiplexer - Input Clamp Diodes Limit High Speed Termination Effects #### **CONNECTION DIAGRAM DIP (TOP VIEW)** NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. LOADING (Note a) #### **PIN NAMES** | | | HIGH | LOW | |---------------------------------|-----------------------------|----------|--------------| | <u>S</u> 0 | Common Select Input | 0.5 U.L. | 0.25 U.L. | | E | Enable (Active LOW) Input | 0.5 U.L. | 0.25 U.L. | | I ₀ , I ₁ | Multiplexer Inputs | 0.5 U.L. | 0.25 U.L. | | Z | Multiplexer Output (Note b) | 10 U.L. | 5 (2.5) U.L. | #### **NOTES** - a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW. - b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges. #### **LOGIC DIAGRAM** # SN54/74LS153 # DUAL 4-INPUT MULTIPLEXER LOW POWER SCHOTTKY J SUFFIX CERAMIC CASE 620-09 N SUFFIX PLASTIC CASE 648-08 D SUFFIX SOIC CASE 751B-03 #### ORDERING INFORMATION SN54LSXXXJ Ceramic SN74LSXXXN Plastic SN74LSXXXD SOIC ### SN54/74LS153 #### **FUNCTIONAL DESCRIPTION** The LS153 is a Dual 4-input Multiplexer fabricated with Low Power, Schottky barrier diode process for high speed. It can select two bits of data from up to four sources under the control of the common Select Inputs (S₀, S₁). The two 4-inp<u>ut multiplexer circuits have individual active LOW Enables (E_a, E_b) which can be_used to strobe the outputs independently. When the Enables (E_a, E_b) are HIGH, the corresponding outputs (Z_a, Z_b) are forced LOW.</u> The LS153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select Inputs. The logic equations for the outputs are shown below. $$\begin{split} Z_{a} &= \overline{E}_{a} \cdot (I_{0a} \cdot \overline{S}_{1} \cdot \overline{S}_{0} + I_{1a} \cdot \overline{S}_{1} \cdot S_{0} + I_{2a} \cdot S_{1} \cdot \overline{S}_{0} + I_{3a} \cdot S_{1} \cdot S_{0}) \\ Z_{b} &= \overline{E}_{b} \cdot (I_{0b} \cdot \overline{S}_{1} \cdot \overline{S}_{0} + I_{1b} \cdot \overline{S}_{1} \cdot S_{0} + I_{2b} \cdot S_{1} \cdot \overline{S}_{0} + I_{3b} \cdot S_{1} \cdot S_{0}) \end{split}$$ The LS153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select Inputs. A less obvious application is a function generator. The LS153 can generate two functions of three variables. This is useful for implementing highly irregular random logic. #### **TRUTH TABLE** | SELECT | ECT INPUTS INPUTS (a or b) | | | | | OUTPUT | | |----------------|----------------------------|---|----------------|----------------|----------------|----------------|---| | S ₀ | s ₁ | E | l ₀ | l ₁ | l ₂ | l ₃ | Z | | Х | Х | Н | Х | Х | Х | Χ | L | | L | L | L | L | X | X | X | L | | L | L | L | Н | X | X | X | Н | | Н | L | L | Χ | L | X | X | L | | Н | L | L | Χ | Н | Χ | X | Н | | L | Н | L | Χ | Χ | L | X | L | | L | Н | L | Χ | X | Н | X | Н | | Н | Н | L | Χ | Χ | Χ | L | L | | Н | Н | L | Χ | Χ | Χ | Н | Н | H = HIGH Voltage Level L = LOW Voltage Level X = Don't Care #### **GUARANTEED OPERATING RANGES** | Symbol | Parameter | | Min | Тур | Max | Unit | |--------|-------------------------------------|----------|-------------|------------|-------------|------| | VCC | Supply Voltage | 54
74 | 4.5
4.75 | 5.0
5.0 | 5.5
5.25 | V | | TA | Operating Ambient Temperature Range | 54
74 | -55
0 | 25
25 | 125
70 | °C | | ЮН | Output Current — High | 54, 74 | | | -0.4 | mA | | lOL | Output Current — Low | 54
74 | | | 4.0
8.0 | mA | # SN54/74LS153 ### DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) | | | | Limits | | | | | | |-----------------|-------------------------------|--------|--------|-------|------|------|---|--| | Symbol | Parameter | | Min | Тур | Max | Unit | Test Conditions | | | VIH | Input HIGH Voltage | | 2.0 | | | V | Guaranteed Input HIGH Voltage for All Inputs | | | \/ | Input LOW Voltage | 54 | | | 0.7 | V | Guaranteed Input | t LOW Voltage for | | V _{IL} | Input LOW Voltage | 74 | | | 0.8 | V | All Inputs | | | VIK | Input Clamp Diode Voltage | | | -0.65 | -1.5 | V | V _{CC} = MIN, I _{IN} = -18 mA | | | V | Output HIGH Voltage | 54 | 2.5 | 3.5 | | V | VCC = MIN, IOH = MAX, VIN = VIH | | | VOH | | 74 | 2.7 | 3.5 | | V | or V _{IL} per Truth T | āble | | Vol | Output LOW Voltage | 54, 74 | | 0.25 | 0.4 | V | I _{OL} = 4.0 mA | V _{CC} = V _{CC} MIN,
V _{IN} = V _{IL} or V _{IH} | | VOL | Output LOW Voltage | 74 | | 0.35 | 0.5 | V | I _{OL} = 8.0 mA | per Truth Table | | 1 | Innut I IICI I Current | | | | 20 | μΑ | $V_{CC} = MAX, V_{IN}$ | = 2.7 V | | ¹IH | Input HIGH Current | | | | 0.1 | mA | V _{CC} = MAX, V _{IN} = 7.0 V | | | I _{IL} | Input LOW Current | | | | -0.4 | mA | V _{CC} = MAX, V _{IN} = 0.4 V | | | los | Short Circuit Current (Note 1 |) | -20 | | -100 | mA | V _{CC} = MAX | | | Icc | Power Supply Current | | | | 10 | mA | V _{CC} = MAX | | Note 1: Not more than one output should be shorted at a time, nor for more than 1 second. # AC CHARACTERISTICS $(T_A = 25^{\circ}C)$ | | | Limits | | | | | | |--------------------------------------|---------------------------------------|--------|----------|----------|------|-----------------|--------------------------------| | Symbol | Parameter | Min | Тур | Max | Unit | Test Conditions | | | tPLH
tPHL | Propagation Delay
Data to Output | | 10
17 | 15
26 | ns | Figure 2 | | | tPLH
tPHL | Propagation Delay
Select to Output | | 19
25 | 29
38 | ns | Figure 1 | $V_{CC} = 5.0 V$ $C_L = 15 pF$ | | t _{PLH}
t _{PHL} | Propagation Delay
Enable to Output | | 16
21 | 24
32 | ns | Figure 2 | | #### **AC WAVEFORMS** Figure 1 Figure 2 #### Case 648-08 N Suffix 16-Pin Plastic #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) - PER SIDE. 751B-01 IS OBSOLETE, NEW STANDARD 751B-03. | | MILLIM | ETERS | INC | HES | | |-----|--------|-------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | С | 1.35 | 1.75 | 0.054 | 0.068 | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | F | 0.40 | 1.25 | 0.016 | 0.049 | | | G | 1.27 | BSC | 0.050 BSC | | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | K | 0.10 | 0.25 | 0.004 | 0.009 | | | M | 0° | 7° | 0° | 7° | | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - TO THE STATE OF LEADS WHEN FORMED PARALLEL. - DIMENSION "B" DOES NOT INCLUDE MOLD - ROUNDED CORNERS OPTIONAL. 648-01 THRU -07 OBSOLETE, NEW STANDARD 648-08. | | MILLIM | ETERS | INC | HES | | |-----|--------|---------|-----------|-------|--| | DIM | MIN | MIN MAX | | MAX | | | Α | 18.80 | 19.55 | 0.740 | 0.770 | | | В | 6.35 | 6.85 | 0.250 | 0.270 | | | С | 3.69 | 4.44 | 0.145 | 0.175 | | | D | 0.39 | 0.53 | 0.015 | 0.021 | | | F | 1.02 | 1.77 | 0.040 | 0.070 | | | G | 2.54 | BSC | 0.100 BSC | | | | Н | 1.27 | BSC | 0.050 BSC | | | | J | 0.21 | 0.38 | 0.008 | 0.015 | | | K | 2.80 | 3.30 | 0.110 | 0.130 | | | L | 7.50 | 7.74 | 0.295 | 0.305 | | | M | 0° | 10° | 0° | 10° | | | S | 0.51 | 1.01 | 0.020 | 0.040 | | - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L'TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY. 5. 620-01 THRU-08 OBSOLETE, NEW STANDARD 620-09. | | MILLIM | ETERS | INC | HES | | |-----|----------|-------|-----------|-------|--| | DIM | MIN MAX | | MIN | MAX | | | Α | 19.05 | 19.55 | 0.750 | 0.770 | | | В | 6.10 | 7.36 | 0.240 | 0.290 | | | С | _ | 4.19 | _ | 0.165 | | | D | 0.39 | 0.53 | 0.015 | 0.021 | | | E | 1.27 BSC | | 0.050 | BSC | | | F | 1.40 | 1.77 | 0.055 | 0.070 | | | G | 2.54 | BSC | 0.100 BSC | | | | J | 0.23 | 0.27 | 0.009 | 0.011 | | | K | _ | 5.08 | _ | 0.200 | | | L | 7.62 BSC | | 0.300 | BSC | | | M | 0° | 15° | 0° | 15° | | | N | 0.39 | 0.88 | 0.015 | 0.035 | | Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. #### **Literature Distribution Centers:** USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.